

1	Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic
2	Sweden
3	
	Kuang-Yu Chang*,
4	Kuang- ru Chang ⁺ ,
5	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
6	Berkeley, California, USA
7	William J. Riley,
8	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,
9	Berkeley, California, USA
10	Patrick Crill,
11	Department of Geological Sciences, Stockholm University, Stockholm, Sweden
12	Robert F. Grant,
13	Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
14	Virginia Rich,
15	Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
16	and,
17	Scott Saleska,
18	Department of Ecology and Evolutionary Biology, University of Arizona, Tucson,
19	Arizona, USA
20	
21	
22	*Corresponding author: Kuang-Yu Chang, ckychang@lbl.gov
23	Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
24	Berkeley, California, USA

25 Phone: (510) 495-8141

26	Abstract
27	Permafrost peatlands store large amounts of carbon potentially vulnerable to
28	decomposition. However, the fate of that carbon in a changing climate remains uncertain
29	in models due to complex interactions among hydrological, biogeochemical, microbial,
30	and plant processes. In this study, we estimated effects of climate forcing biases present
31	in global climate reanalysis products on carbon cycle predictions at a thawing permafrost
32	peatland in subarctic Sweden. The analysis was conducted with a comprehensive
33	biogeochemical model (ecosys) across a permafrost thaw gradient encompassing intact
34	palsa with an ice core and a shallow active layer, partly thawed bog with a deeper active
35	layer and a variable water table, and fully thawed fen with a water table close to the
36	surface, each with distinct vegetation and microbiota. Using in situ observations to
37	correct local cold and wet biases found in the Global Soil Wetness Project Phase 3
38	(GSWP3) climate reanalysis forcing, we evaluated our model performance by comparing
39	predicted and observed carbon dioxide (CO ₂) and methane (CH ₄) exchanges, thaw depth,
40	and water table depth. The simulations driven by the bias-corrected climate suggest that
41	the three peatland types currently accumulate carbon from the atmosphere, although the
42	bog and fen sites can have annual positive radiative forcing impacts due to their higher
43	CH ₄ emissions. Our simulations indicate that projected precipitation increases could
44	accelerate CH ₄ emissions from the palsa area, even without further degradation of palsa
45	permafrost. The GSWP3 cold and wet biases for this site significantly alter simulation
46	results and lead to erroneous active layer depth and carbon budget estimates. Biases in
47	simulated CO_2 and CH_4 exchanges from biased climate forcing are as large as those
48	among the thaw stages themselves at a landscape scale across the examined permafrost

- 49 thaw gradient. Future studies should thus not only focus on changes in carbon budget
- 50 associated with morphological changes in thawing permafrost, but also recognize the
- 51 effects of climate forcing uncertainty on carbon cycling.

52 1. Introduction

53	Confidence in future climate projections depends on the accuracy of terrestrial
54	carbon budget estimates, which are presently very uncertain (Friedlingstein et al., 2014;
55	Arneth et al., 2017). In addition to the complexity in physical process representations, a
56	major source of this uncertainty comes from challenges in quantifying climate responses
57	induced by biogeochemical feedbacks. Increases in atmospheric carbon dioxide (CO ₂)
58	concentrations can directly stimulate carbon sequestration from plant photosynthesis
59	(Cox et al., 2000; Friedlingstein et al., 2006) and indirectly stimulate carbon emissions
60	(e.g., from soil warming and resulting increased respiration), although the predicted
61	magnitudes of these exchanges strongly depend on model process representations (Zaehle
62	et al., 2010; Grant, 2013, 2014; Ghimire et al., 2016; Chang et al, 2018).
63	The undecomposed carbon stored in permafrost is of critical importance for
64	biogeochemical feedbacks to climate because it is about twice as much as currently is in
65	the atmosphere (Hugelius et al., 2014) and is vulnerable to release to the atmosphere as
66	permafrost thaws (Schuur et al., 2015). Lundin et al. (2016) reported that it is plausible
67	(71% probability) for the high latitude terrestrial landscape to serve as a net carbon
68	source to the atmosphere, although its peatland components would remain atmospheric
69	carbon sinks.
70	In addition to the overall carbon balance of the changing Arctic, the type of
71	carbon gaseous emission is important to climate feedbacks. High latitudes are predicted
72	to get wetter (IPCC, 2014), and saturated anaerobic conditions facilitate methane (CH ₄)
73	production, which is a much more efficient greenhouse gas than CO_2 in terms of global
74	warming potential. Even habitats that can be net carbon sinks can produce positive

75	radiative forcing impacts on climate due to CH ₄ release, as Bäckstrand et al. (2010)
76	showed for a subarctic peatland. Under projected warming and wetting trends in the
77	Arctic (Collins et al., 2013; Bintanja and Andry, 2017), carbon cycle feedbacks over the
78	permafrost region could become stronger as increased precipitation enhances surface
79	permafrost thaw and strengthens CH4 emissions by expansion of anaerobic volume
80	(Christensen et al., 2004; Wickland et al., 2006).
81	The Stordalen Mire in northern Sweden (68.20°N, 19.05°E) is in the
82	discontinuous permafrost zone, encompassing a mosaic of thaw stages with associated
83	distinct hydrology and vegetation (Christensen et al. 2004; Malmer et al., 2005),
84	microbiota (Mondav and Woodcroft et al., 2014; Mondav et al., 2017; Woodcroft and
85	Singleton et al., 2018), and organic matter chemistry (Hodgkins et al., 2014). These
86	landscapes have been shifting over the last half-century to a more thawed state, likely due
87	to recent warming (Christensen et al. 2004). Drier hummock sites dominated by shrubs
88	have degraded to wetter sites dominated by graminoids (Malmer et al., 2005; Johansson
89	et al., 2006). The thaw-induced habitat shifts are associated with increases in landscape
90	scale CH ₄ emissions (Christensen et al. 2004; Johansson et al., 2006; Cooper et al., 2017)
91	reflective of the higher CH ₄ emissions of the wetter thawed habitats (McCalley et al.,
92	2014). The higher CO ₂ uptake in later thaw-stage habitats has not compensated for the
93	increase in positive radiative forcing from elevated CH4 emissions (Bäckstrand et al.,
94	2010; Deng et al., 2014).
95	The impacts of climate sensitivity on the terrestrial carbon cycle have been
96	investigated at the global scale, and the results highlight the need to consider uncertainty
97	in climate datasets when evaluating permafrost region carbon cycle simulations

98	(Ahlström et al., 2017; Guo et al., 2017; Wu et al., 2017). Ahlström et al. (2017) showed
99	that climate forcing biases are responsible for a considerable fraction (~40%) of the
100	uncertainty range in ecosystem carbon predictions from18 Earth System Models (ESMs)
101	reported by Anav et al. (2013). Guo et al. (2017) concluded that the differences in climate
102	forcing contribute to significant differences in simulated soil temperature, permafrost
103	area, and active layer thickness. Wu et al. (2017) demonstrated that differences among
104	climate forcing datasets contributes more to predictive uncertainty than differences in
105	apparent model sensitivity to climate forcing. However, notably, none of these studies
106	accessed the effects on CH ₄ emissions, and their spatial resolution could not represent
107	site-level spatial heterogeneity observed in arctic tundra (Grant et al. 2017a; 2017b).
108	Here, we use the ecosystem model ecosys, which employs a comprehensive set of
109	fully coupled biogeochemical and hydrological processes, to estimate the effects of
110	climate forcing uncertainty and sensitivity on CO2 and CH4 exchanges and active layer
111	thickness simulations. For the Stordalen Mire site, we estimated bias in the Global Soil
112	Wetness Project Phase 3 (GSWP3) climate reanalysis dataset using site-level long-term
113	meteorological measurements and evaluated impacts on simulated soil and plant
114	processes across the permafrost thaw gradient. This approach enables us to assess model
115	sensitivity to individual climate forcing biases, instead of the aggregated uncertainty
116	range embedded in climate datasets (e.g., variations of climate conditions represented in
117	different climate datasets) presented in previous studies. We address the following
118	questions for our study site at the Stordalen Mire: (1) What are the biases embedded in
119	the GSWP3 climate reanalysis dataset? (2) How do those biases affect model predictions
120	of active layer depth, CO ₂ exchanges, and CH ₄ exchanges? (3) How does climate

- 121 sensitivity vary across the stages of permafrost thaw? In addition to improving
- 122 understanding of permafrost responses to climate, we identify ecosystem carbon
- 123 prediction uncertainty induced by climate forcing uncertainty in general as the biases
- 124 found in GSWP3 were consistent with other climate reanalysis datasets during the last
- 125 decade (section 3).
- 126

127 2. Methods and Data

128 2.1 Study site description

129 Our study sites are located at the Stordalen Mire (68.20 °N, 19.03 °E: 351 m

above sea level), which is about 10 km southeast of the Abisko Scientific Research

131 Station (ANS) in northern Sweden. Significant changes in climate over this region have

been recorded during the last few decades. The annual mean air temperature measured at

133 the ANS has risen by 2.5 °C from 1913 to 2006, where it exceeded the 0 °C threshold

134 (0.6 °C in 2006) for the first time over the past century (Callaghan et al., 2010). The

measured annual total precipitation has also increased from 306 mm y⁻¹ (years 1913 to

- 136 2009) to 336 mm y^{-1} (years 1980 to 2009) (Olefeldt and Roulet, 2012), along with
- 137 increased variability in extreme precipitation (Callaghan et al., 2010). The measured
- annual maximum snow depth has increased from 59 cm (years 1957 to 1971) to 70 cm

139 (years 1986 to 2000), and the snow cover period with snow depth greater than 20 cm has

- decreased from 5.8 months (years 1957 to 1971) to 4.9 months (years 1986 to 2000)
- 141 (Malmer et al., 2005).

The Stordalen Mire can be broadly classified into three peatland types: intactpermafrost palsa, partly thawed bog, and fully thawed fen (Hodgkins et al., 2014),

- 144 hereafter referred to as palsa, bog, and fen. The spatial distribution of these peatland
- 145 types in 2000 can be found in Olefeldt and Roulet (2012). The palsa sites are
- 146 ombrotrophic and raised 0.5 to 2.0 m above their surroundings, with a relatively thin peat
- 147 layer (0.4 to 0.7 m, Rydén et al., 1980), thinner active layer depth (less than 0.7 m in late
- summer), and no measurable water table depth (Bäckstrand et al., 2008a; 2008b; Olefeldt
- and Roulet, 2012). The bog sites are ombrotrophic and are wetter than the palsa sites,
- 150 with a thicker peat layer (0.5 to ~1 m, Rydén et al., 1980), thicker active layer depth
- 151 (ALD) (greater than 0.9 m), and water table depth fluctuating from 35 cm to the ground
- 152 surface (Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The fen sites have
- 153 no permafrost and are minerotrophic, receiving a large amount of water from a lake to the
- 154 east of the mire, with water table depths near or above the ground surface (Bäckstrand et
- 155 al., 2008a; 2008b; Olefeldt and Roulet, 2012).
- 156 Differences in hydrology and permafrost conditions create high spatial
- 157 heterogeneity with different soil moisture, pH, and nutrient conditions that support
- different plant communities (Bäckstrand et al., 2008a; 2008b). The palsa is dominated by
- dwarf shrubs with some sedges, feather mosses, and lichens (Malmer et al., 2005;
- 160 Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The bog is dominated by
- 161 Sphagnum spp. mosses with a moderate abundance of sedges (Malmer et al., 2005;
- 162 Bäckstrand et al., 2008a; 2008b; Olefeldt and Roulet, 2012). The fen sites we studied are
- 163 dominated by sedges (Bäckstrand et al., 2008a; 2008b).

164

165 **2.2 Field measurements**

166	Continuous daily meteorological measurements have been recorded at the ANS
167	since 1913, including air temperature, precipitation, wind speed, wind direction, relative
168	humidity, and snow depth. Measurements of solar radiation, longwave radiation, and soil
169	temperature are also available at the ANS since 1982. The soil thaw depth (measured to
170	90 cm) and water table depth measurements were taken in the three peatland types 3 to 5
171	times per week from early May to mid-October during 2003 to 2007 (Bäckstrand et al.,
172	2008b).
173	CO_2 and CH_4 exchanges at the three peatland types were measured with
174	automated chambers during the thawed seasons from 2002 to 2007. Chamber lids were
175	removed in the Fall and replaced in the Spring. Three chambers were in the palsa, three
176	were in the bog, and two were in the fen. Each chamber covered an area of 0.14 m^2 with a
177	height of 25–45 cm depending on the vegetation and the depth of insertion. Each
178	chamber was closed for 5 minutes every 3 hours to measure CO_2 and total hydrocarbon
179	(THC) exchanges. CH ₄ exchanges were manually observed approximately 3 times per
180	week, and these measurements were used to quantify the proportion of CH_4 in the
181	measured THC (Bäckstrand et al., 2008a). The CH_4 exchanges were near zero in the
182	palsa sites (Bäckstrand et al., 2008a; Bäckstrand et al., 2008b; Bäckstrand et al., 2010), so
183	it was not incorporated in our model evaluation. We used the CO_2 and CH_4 exchanges
184	observed at 3-hourly steps when the R^2 values recorded in the measurements were greater
185	than 0.8 (Tokida et al., 2007), and then calculated the associated daily mean exchanges
186	when there were 8 measurements per day (Table 1). The quality-controlled daily
187	measurements only covered 12.4-33.7% of the daily data points because of the lack of
188	continuous quality-controlled 3-hourly measurements. The data screening was applied to

- 189 exclude unreliable measurements and avoid biases from inappropriate gap filling, which
- 190 is necessary for model evaluations. More detailed descriptions of the CO₂ and CH₄
- 191 exchanges measurements can be found in Bäckstrand et al. (2008a).
- 192
- 193 **2.3 GSWP3**
- 194 GSWP3 is an ongoing modeling activity that provides global gridded
- 195 meteorological forcing (0.5° x 0.5° resolution) and investigates changes in energy-water-
- 196 carbon cycles throughout the 20th and 21st centuries. The GSWP3 dataset is based on the
- 197 20th Century Reanalysis (Compo et al., 2011), using a spectral nudging dynamical
- 198 downscaling technique described in Yoshimura and Kanamitsu (2008). A more detailed
- description of the GSWP can be found in Dirmeyer (2011) and van den Hurk et al.
- 200 (2016).
- 201 In this study, we extracted the meteorological conditions at the Stordalen Mire
- from 1901 to 2010 from the GSWP3 climate reanalysis dataset. The 3-hourly products of
- 203 air temperature, precipitation, solar radiation, wind speed, and specific humidity were
- 204 interpolated to hourly intervals with cubic spline interpolation to serve as the
- 205 meteorological inputs used in our model.
- 206 The GSWP3 dataset was chosen over other existing climate reanalysis datasets for
- 207 its spatial and temporal resolutions. For example, the Climatic Research Unit (CRU;
- Harris et al., 2014) dataset provided monthly meteorological forcing at $0.5^{\circ} \ge 0.5^{\circ}$
- 209 resolution; the National Centers for Environmental Prediction (NCEP; Kalnay et al.,
- 210 1996; Kanamitsu et al., 2002) dataset provided 6-hourly meteorological forcing at T62
- 211 Gaussian grid (~1.915° x 1.895° resolution); the CRUNCEP (Viovy, 2018) dataset

- 212 provided 6-hourly meteorological forcing at $0.5^{\circ} \times 0.5^{\circ}$ resolution; and the European
- 213 Centre for Medium-Range Weather Forecasts (ECMWF; Berrisford et al., 2011) dataset
- 214 provided 3-hourly meteorological forcing with 125 km (~1.125°) horizontal resolution.
- 215

216 2.4 Model description

217 *Ecosys* is a comprehensive biogeochemistry model that simulates ecosystem 218 responses to diverse environmental conditions with explicit representations of microbial 219 dynamics and soil carbon, nitrogen, and phosphorus biogeochemistry. The above-ground 220 processes are represented in multi-layer plant interacting canopies, and the below-ground 221 processes are represented in multiple soil layers with multi-phase subsurface reactive 222 transport. Ecosys operates at variable time steps (down to seconds) determined by 223 convergence criteria, and it can be applied at patch scale (spatially homogenous one-224 dimensional) and landscape scale (spatially variable two- or three-dimensional). Detailed 225 descriptions, including inputs, outputs, governing equations, parameters, and references 226 of the ecosys model can be found in Grant (2013). 227 The ecosys model has been extensively tested against eddy covariance fluxes and 228 related ecophysiological measurements with a wide range of sites and weather conditions 229 in boreal, temperate, and tropical forests (Grant et al., 2007a; Grant et al., 2007c; Grant et 230 al., 2009a; Grant et al., 2009b; Grant et al., 2009c; Grant et al., 2010), wetlands (Dimitrov 231 et al., 2011; Grant et al., 2012b; Dimitrov et al., 2014; Mezbahuddin et al., 2014), 232 grasslands (Grant and Flanagan, 2007; Grant et al., 2012a), tundra (Grant et al., 2003; 233 Grant et al., 2011b; Grant 2015; Grant et al., 2015), croplands (Grant et al., 2007b; Grant 234 et al., 2011a), and other permafrost-associated habitats (Grant and Roulet, 2002; Grant,

235 2017a; Grant et al., 2017b). All *ecosys* model structures are unchanged from those

236 described in these earlier studies.

237 2.5 Experimental design

To evaluate the effects of climate on model predictions, we conducted four sets of simulations at each of the three peatland types at the Stordalen Mire from 1901 to 2010. The 110 year simulations were performed to ensure the simulation was equilibrated with local climate (Grant et al. 2017a).

242 The meteorological conditions for all the simulations were based on the hourly 243 data extracted from the GSWP3 climate reanalysis dataset (section 2.3). The monthly 244 mean bias of the GSWP3 for this location was calculated by comparing it to the air 245 temperature and precipitation measured at the ANS, for years 1913 to 2010 (section 3.1). 246 The full series of air temperature and precipitation extracted from GSWP3 were then 247 bias-corrected using the monthly mean bias calculated from 1913 to 2010; we label this 248 model scenario CTRL. Our bias correction was conceptually similar to the one used in 249 Ahlström et al. (2017), where the bias-corrected climate forcing fields were the ESM 250 outputs adjusted by the corresponding bias calculated from observations in a reference 251 period. 252 The simulation results from CTRL should represent the reliability of applying 253 ecosys at the Stordalen Mire because CTRL is driven by the best local climate 254 description. We first evaluated predicted thaw depth, water table depth, and CO₂ and CH₄ 255 exchanges using the CTRL simulation (section 3.2 to 3.4). In the second set of 256 simulations, BIASED-COLD, the biased GSWP3 air temperature data was used, and we 257 corrected only the GSWP3 precipitation. Deviations between CTRL and BIASED-COLD

258	reflect biased air temperature's effects on responses across the thaw gradient. In the third
259	set of simulations, BIASED-WET, we bias-corrected the air temperature extracted from
260	GSWP3, which allows us to quantify the effects of biased precipitation. Finally, we used
261	the meteorological conditions directly extracted from GSWP3 to drive our fourth set of
262	simulations, BIASED-COLD&BIASED-WET, which reveals the uncertainty range of
263	subarctic peatland simulation associated with the local biases in GSWP3 climate forcing.
264	While the three peatland types share the same climate conditions, they differ in
265	soil hydrologic conditions and vegetation characteristics (section 2.1). The bulk density
266	and porosity profiles were set to the values reported in Rydén et al. (1980), who
267	suggested a decreasing trend of bulk density and an increasing trend of porosity from
268	palsa (0.12 Mgm ⁻³ at surface; 92–93% within the upper 10 cm) to bog and fen (0.06
269	Mgm ⁻³ at surface; 96–97% within the upper 10 cm). The peatland soil carbon-to-nitrogen
270	(C/N) ratios and pH values were assigned according to Hodgkins et al. (2014), who
271	documented an increasing trend of pH from palsa (4.0), to bog (4.2), to fen (5.7), and a
272	decreasing trend of soil organic matter C/N ratio from bog (46±18), to palsa (39±24), to
273	fen (19±0.4). Common values of field capacity (0.4) and wilting point (0.15) were used
274	for the three peatland types (Deng et al., 2014).
275	
276	3 Results and Discussion
277	3.1 GSWP3 climate comparison to observations

As described in section 2.3, we extracted meteorological conditions at the

- 279 Stordalen Mire from the GSWP3 climate reanalysis dataset. The closest GSWP3 grid cell
- 280 was centered at 68.0 °N and 19.0 °E, which covers the Stordalen Mire and the ANS. The

281	annual mean air temperature and precipitation calculated at this GSWP3 grid cell were -
282	3.65 °C and 683.88 mm y ⁻¹ , respectively, for years 1913 to 2010. A cold bias (-3.09 °C)
283	was identified in the GSWP3 annual mean air temperature during the 1913 to 2010
284	period, although a very high correlation coefficient ($r = 0.99$) was found when compared
285	with the ANS measurements (Figure 1a). Both time series exhibit an overall warming
286	trend from the early 20^{th} century to the present (0.01°C y ⁻¹), with an even more prominent
287	warming trend from 1980 to 2010 (0.05 °C y ⁻¹ [ANS] and 0.04 °C y ⁻¹ [GSWP3]).
288	Similarly, the GSWP3 annual total precipitation data correlates well with ANS
289	measurements (r = 0.80) but has a wet bias of 380 mm y^{-1} between 1913 and 2010
290	(Figure 1b). An increasing trend in annual total precipitation was recorded in both time
291	series from the early 20 th century to present (0.47 mm y ⁻² [ANS] and 1.07 mm y ⁻²
292	[GSWP3]), although a decreasing trend was found from 1980 to 2010 (-0.56 mm y^{-2}
293	[ANS] and -2.39 mm y ⁻² [GSWP3]).
294	The seasonal cycle of the GSWP3 monthly mean air temperature also matches
295	that measured at the ANS, with a very high correlation coefficient ($r = 0.99$; Figure 2a).
296	The underestimation bias and inter-annual variability of GSWP3 air temperature are
297	greater in winter (maximum underestimate in December, at -4.52 °C) and smaller in
298	summer (minimum underestimate in July, at -1.52 °C), respectively.
299	The magnitude and inter-annual variability of the GSWP3 monthly mean
300	precipitation are comparable between winter and summer, while the ANS measurements
301	exhibit stronger seasonality with lower magnitudes during winter. Despite the differences
302	found in seasonal patterns, a high correlation coefficient ($r = 0.64$) was found between the
303	monthly mean precipitation extracted from GSWP3 and the ANS measurements. The

- 304 overestimation of monthly mean precipitation was greatest in December (43.25 mm
- 305 month^{-1}) and smallest in August (18.75 mm month).
- 306 These comparisons suggest that GSPW3 air temperature and precipitation data
- 307 reasonably capture measured seasonal and long-term trends over past decades, but are
- 308 biased cold and wet compared to observations, especially during winter. Similar cold and
- 309 wet biases exist in CRUNCEP and ECMWF climate reanalysis datasets during our 2003
- to 2007 study period (Supplemental Material Figure 1). The calculated annual mean air
- 311 temperature and precipitation at the Stordalen Mire for years 2003 to 2007 were -2.49 °C
- 312 (precipitation 795.09 mm y⁻¹), -2.46 °C (708.60 mm y⁻¹), and -2.28 °C (765.67 mm y⁻¹) in
- the GSWP3, CRUNCEP, and ECMWF climate reanalysis datasets, respectively.
- 314

315 3.2 Model testing

316 **3.2.1 Thaw depth**

317 We first evaluated ecosys against observations using bias-corrected climate 318 forcing (i.e., the CTRL simulation). Predicted thaw depth agrees well with measurements 319 collected from 2003 to 2007 for all examined peatland types (Figure 3), with a correlation 320 coefficient of 0.95, 0.87, and 0.41 at the palsa, bog, and fen, respectively. Both 321 simulations and observations show that the rate of thaw depth deepening in the summer 322 varies with peatland type (i.e., relatively slow, moderate, and rapid at the palsa, bog, and 323 fen sites, respectively). 324 Predicted and observed maximum thaw depth (i.e., Active Layer Depth, ALD) in 325 the intact permafrost palsa was between 45 and 60 cm in September. In the partly thawed

326 bog, the simulated thaw depth is slightly shallower than that observed before August. The

327	simulated bog thaw depth becomes greater than 90 cm by the end of August, which
328	matches the time when measured thaw depth reaches its maximum. The thaw depth
329	becomes greater than 90 cm by the end of July in the fully thawed fen. The patterns of
330	thawing permafrost presented here are consistent with Deng et al. (2014), who simulated
331	the same site using the DNDC model.
332	
333	3.2.2 CO ₂ exchanges
334	The daily Net Ecosystem Exchange (NEE) simulated in the CTRL simulation
335	reasonably captures observed seasonal dynamics from 2003 to 2007 for all the examined
336	peatland types (Figure 4). The simulations and observations showed net CO ₂ uptake
337	during summer and release during winter. The observations and simulations also showed
338	large CO ₂ emissions in the palsa site during Fall of 2004. Simulated Fall CO ₂ bursts in the
339	three sites in other years could not be confirmed because of a lack of observations during
340	these periods. Similar to the patterns reported in Raz-Yaseef et al. (2016), some episodic
341	CO ₂ emission pulses were simulated as surface ice thaws in Spring, but there were no
342	measurements to confirm those events. The correlation coefficients of the simulated and
343	observed daily NEE ranged from 0.58 to 0.60, and most of the discrepancies between the
344	simulations and observations were within the ranges of NEE variability measured at
345	different subsites within the same peatland type.
346	As described in section 2.2, simulated CO ₂ exchanges were evaluated for 3-hourly
347	and daily time steps when quality-controlled measurements were available (R ² values and

- relative root mean squared errors (RRMSEs) shown in Table 2). Simulated NEE is in 348
- 349 reasonable agreement with the 3-hourly NEE measurements with RRMSEs ranging

- from 8.4 to 19.1%. Model performance was generally poorer at daily time steps, although
- the calculated RRMSEs were comparable to those reported in Deng et al. (2014). We
- 352 suspect this degradation resulted from uncertainty in determining a daily NEE
- representative of the entire peatland type due to (1) limited daily data points (less than
- 354 14% across the study period, Table 1) due to lack of continuous quality-controlled 3-
- 355 hourly measurements and (2) the large variability of daily NEE ranges measured at
- 356 different subsites within the same peatland type (Figure 4). Our results thus indicate that
- NEE is affected by thaw stage (Bäckstrand et al., 2010; Deng et al., 2014) and fine scale
- 358 spatial heterogeneity of the system. More detailed measurements with higher spatial and
- temporal resolutions within the same peatland type would be necessary to characterize
- the effects of this type of heterogeneity.
- 361

362 **3.2.3 Water table depth and CH₄ exchanges**

363 Simulated water table depth generally captures observed seasonal patterns 364 measured in the bog and fen sites from 2003 to 2007 (Figure 5a, c). During summer, the 365 predicted bog water table depth fluctuates around the ground surface, and the predicted 366 water table depth is at or above the ground surface in the fen. Water table depths 367 simulated by *ecosys* are generally higher than the corresponding measurements in the 368 bog, where measured water table depths are often below the ground surface with greater 369 seasonal variability. Simulated fen water table depths have better overall fit to 370 observations, being higher (~5 cm) than measurements in 2003 and 2004, close to 371 measurements in 2005 and 2006, and slightly deeper (~2 cm) than measurements in 2007. 372 The discrepancies in water table depth could be driven by the limitations of our one-

373	dimensional column simulation which inhibits lateral water transport and hinders the
374	variations of water table depth, which is a particular issue in simulating the dynamic
375	water table of the bog. A multi-dimensional simulation that includes realistic topographic
376	effects could help improve the representation of water table dynamics, and estimates of
377	the measurement uncertainty would help facilitate the assessment of simulation bias.
378	Simulated and measured daily CH4 exchanges correlate reasonably well in the
379	bog (r = 0.49) and well in the fen (r = 0.65) sites across the study period (Figure 5b, d).
380	Both the simulations and observations have stronger CH4 emissions during summer with
381	peak emissions in late summer. Some episodic CH4 emission pulses (Mastepanov et al.,
382	2008) were simulated during shoulder seasons, and the simulated amount of post-growing
383	season CH ₄ emissions agrees well with those measured in 2007.
384	Most of the discrepancies between simulated and observed CH ₄ emissions were
385	within the variability of measurements across subsites within the same peatland type. The
386	3-hourly and daily RRMSEs ranged from 11.1 to 22.3% (Table 2) and the daily RRMSEs
387	were comparable to results presented in Deng et al. (2014). Our results show that model
388	evaluation of CH ₄ emissions with finer temporal resolution observations is not necessarily
389	superior to evaluation with coarser temporal resolution. This result could be related to
390	weaker CH ₄ emission variability measured across subsites within the same peatland type
391	(Figure 5b, d).
392	
393	3.3 Variability across the permafrost thaw gradient
394	Thaw rate and ALD increase along the thaw gradient (i.e., palsa to bog to fen),

395 and landscape variations are generally greater than simulated inter-annual variability

396	(Figure 6a). Maximum carbon uptake also increases along the thaw gradient, and
397	variations across the landscape are comparable with simulated intra-seasonal and inter-
398	annual variabilities (Figure 6b). The simulated mean seasonal cumulative NEE were
399	calculated based on the seasonality identified in Bäckstrand et al. (2010), and the results
400	show that the magnitude of mean growing season CO_2 uptake is highest in the fen and
401	lowest in the palsa (Table 3). The same rank applies to the magnitude of mean CO_2
402	emissions over the non-growing season, although differences across the thaw gradient are
403	smaller.
404	CH ₄ emission rates increase significantly along the thaw gradient, and the palsa
405	site emissions are negligible (Figure 6c). Mean cumulative CH4 emissions simulated in
406	the fen site are much higher than those in the bog site, and most CH_4 emissions occur
407	during the growing season (Table 3). The higher CH_4 emissions in the fully thawed fen
408	can be attributed to its faster thaw rate (Figure 6a) and a water table depth close to the
409	surface (Figure 5c). Seasonal cumulative NEE and CH_4 emissions from observations
410	could not be accessed due to the lack of continuous quality controlled carbon flux
411	measurements during our study period (Table 1).
412	

413 4. Climate sensitivity of permafrost thaw

414 4.1 Thaw responses to climate

For each of the four sets of simulations with different climate forcing (section 2.5), simulated mean ALD from 2003 to 2007 is always greatest in the fen and lowest in the palsa (Figure 7). This consistent trend along the thaw gradient indicates that ALDs are largely regulated by their distinct ecological and hydrological conditions, because all

- 419 three sites had the same climate forcing in each set of simulations (i.e., CTRL, BIASED-
- 420 COLD, BIASED-WET, and BIASED-COLD&BIASED-WET). Therefore, the intact
- 421 permafrost palsa, partly thawed bog, and fully thawed fen have different resilience
- 422 against the changes in climate forcing, and this type of ecosystem resilience plays an
- 423 important role in determining ALD under changes in climate conditions.
- 424 Effects of climate on simulated ALD are similar across peatland types (Figure 7).
- 425 With increased precipitation (BIASED-WET vs. CTRL), simulated ALD generally
- 426 becomes deeper with greater inter-annual variability at all the examined peatland types.
- 427 This effect is less prominent in the comparison between experiments BIASED-COLD
- 428 and BIASED-COLD&BIASED-WET, possibly because the cold biases in these two
- 429 experiments (section 3.1) constrain ALD variation. The simulated ALD also becomes
- 430 deeper with higher air temperature (CTRL vs. BIASED-COLD; BIASED-WET vs.
- 431 BIASED-COLD&BIASED-WET) at all the examined peatland types. This response is
- 432 more evident in the comparison between experiments BIASED-WET and BIASED-
- 433 COLD&BIASED-WET, probably driven by their wet bias (section 3.1) that facilities
- 434 ALD deepening (via increased thermal conductivity and advective heat transport; Grant
- 435 et al. 2017a). Similar dependencies between ALD and climate were shown in Åkerman
- and Johansson (2008) and Johansson et al. (2013), based on multi-year measurements and
- 437 snow manipulation experiments.
- 438 Therefore, the combined cold and wet biases in the GSWP3 climate reanalysis
- 439 dataset could counteract their individual effects on simulated ALD development at the
- 440 Stordalen Mire. Our results indicate a 28.6%, 0.7%, and 11.7% underestimation of ALD
- simulated in the palsa, bog, and fen sites, respectively, when applying the GSWP3

- 442 climate reanalysis data over this region without proper bias correction (BIASED-
- 443 COLD&BIASED-WET vs. CTRL). Our sensitivity analysis suggests that projected
- 444 warming and wetting trends (Collins et al., 2013) could significantly increase ALD in the
- 445 Arctic, since increases in precipitation and air temperature can both contribute to ALD
- 446 deepening.
- 447

448 **4.2** Carbon budget responses to climate

- Annual mean (from 2003 to 2007) CO_2 and CH_4 exchanges simulated with the
- 450 four climate forcing datasets (section 2.5) indicate a general CO₂ sink and CH₄ source,
- 451 except the weak CO₂ emissions simulated at the fen in experiment BIASED-
- 452 COLD&BIASED-WET (Figure 8a,b). Our results also indicate that differences in annual
- 453 CO₂ and CH₄ exchanges across the four climate forcing datasets for a single peatland type

454 are as large as those across peatland types for a single climate forcing dataset (Figure

- 455 8a,b). These large CO₂ and CH₄ exchanges climate sensitivities demonstrate that the
- 456 peatland's dynamical responses to climate have stronger effects on the carbon cycle than
- 457 on ALDs (Figure 7).
- 458 With bias-corrected precipitation, increased air temperature (CTRL vs. BIASED-
- 459 COLD) leads to stronger CO₂ uptake and greater CH₄ emissions at all the examined
- 460 peatland types (Figure 8a,b), mainly because enhanced sedge growth facilitates carbon
- 461 cycling under a warmer environment (results not shown). This air temperature sensitivity
- 462 affects CO₂ and CH₄ exchanges within the same peatland type without significantly
- 463 changing ALD (Figure 7). For both experiments, CO₂ uptake and CH₄ emissions are
- 464 greatest in the fully thawed fen and lowest in the intact permafrost palsa, consistent with

465	the measurements reported in Bäckstrand et al. (2010) for the same period. Based on the
466	Coupled Model Intercomparison Project, phase 5 (CMIP5) ESM simulations, arctic
467	annual mean surface air temperature is projected to increase by 8.5 ± 2.1 °C over the 21 st
468	century (Bintanja and Andry, 2017). This projected air temperature increase is more than
469	double the air temperature difference between site-observed and GSWP3 temperatures,
470	which could significantly enhance CH_4 emissions regardless of palsa degradation into bog
471	and fen.
472	On the other hand, wet biases (BIASED-WET and BIASED-COLD&BIASED-
473	WET) increase CH ₄ emissions in the palsa site; wetter and colder conditions result in as
474	much CH ₄ release as the current fen sites, while wetter conditions alone drive palsa
475	emissions comparable to the current bog sites (Figure 8b). The large precipitation
476	sensitivity found in palsa CH_4 emissions could have strong effects on palsa carbon
477	cycling because arctic precipitation is projected to increase by $50 - 60$ % towards the end
478	of the twenty-first century (based on CMIP5 estimates; Bintanja and Andry, 2017). The
479	comparison between experiments BIASED-WET and BIASED-COLD&BIASED-WET
480	shows that in the palsa, increased air temperature strengthens CO ₂ uptake and weakens
481	CH ₄ emissions. This shift is primarily driven in the model by increased shrub and moss
482	productivity under the warmer environment, which facilitate CO ₂ uptake while drying out
483	the soil and reducing CH ₄ emissions (results not shown). In the bog and fen sites,
484	increased air temperature under wet bias strengthens both the simulated CO ₂ uptake and
485	CH ₄ emissions (BIASED-WET vs. BIASED-COLD&BIASED-WET), due to enhanced
486	sedge growth under the warmer environment that facilitates carbon cycling in the
487	experiment BIASED-WET.

488	We assessed the integrated effects of the changes in CO ₂ and CH ₄ exchanges
489	identified in the full suite of simulations in terms of the Net Carbon Balance (NCB) and
490	net emissions of greenhouse gases expressed as CO2 equivalents (Net Greenhouse Gas
491	Balance; NGGB). NCB was defined as the sum of the annual total $\rm CO_2$ and $\rm CH_4$
492	exchanges. NGGB was defined in a similar fashion as the NCB, but considers the greater
493	radiative forcing potential of CH_4 than CO_2 (28 times over a 100-year horizon, Myhre et
494	al., 2013) when calculating the annual total. The calculated NCB values are mostly
495	negative because the stronger CO_2 uptake dominates the weaker CH_4 emissions (Figure
496	8c). The results suggest that all the examined peatland types serve as net carbon sinks
497	under current climate (CTRL), consistent with the estimates reported in Deng et al.
498	(2014) and Lundin et al. (2016). We find a 24, 36, and 38 g C $m^{-2} y^{-1}$ underestimation of
499	NCB simulated in the palsa, bog, and fen sites, respectively, due to the cold and wet
500	biases in the GSWP3 climate reanalysis dataset (BIASED-COLD&BIASED-WET vs.
501	CTRL). NGGB is affected more strongly by CH ₄ emissions (Figure 8d), due to its larger
502	radiative forcing potential. NGGB values are positive over the bog and fen sites,
503	suggesting that these sites can exhibit positive radiative forcing impacts despite being net
504	carbon sinks. NGGB simulated in the palsa site is generally negative (i.e., a net sink from
505	the atmosphere) due to lower CH ₄ emissions, except for the simulation conducted without
506	any climate bias correction (correcting only air temperature increased CH ₄ emissions but
507	not enough to compensate for the significantly higher CO_2 sink). Our results indicate that
508	the simulated NGGB would be biased by 298, -66, and -252 g CO_2 -eq m ⁻² y ⁻¹ in the palsa,
509	bog, and fen sites, respectively, without proper bias correction for the GSWP3 climate
510	reanalysis dataset (BIASED-COLD&BIASED-WET vs. CTRL). Using the GSWP3

- 511 products directly thus effectively eliminates the positive radiative forcing from the
- 512 expanding bog and fen sites, while creating a potentially dramatically inaccurate positive
- 513 radiative forcing from the shrinking palsa sites.
- 514

515 4.3 Climate sensitivity versus landscape heterogeneity

516 Climate sensitivity and landscape heterogeneity are defined here as variability 517 across the four climate forcing datasets for a single peatland type, and variability across 518 three peatland types with bias-corrected climate (CTRL), respectively. We estimated 519 carbon cycle variability associated with climate sensitivity and landscape heterogeneity to 520 quantify the corresponding uncertainty in our annual carbon cycle assessments from 2003 521 to 2007. Our results indicate that differences in simulated annual mean CO₂ exchanges 522 and NCB from climate sensitivity are greater than those from landscape heterogeneity 523 (Figure 8a,c); i.e., annual CO_2 uptake strength is more sensitive to climate forcing 524 uncertainty than to peatland type representation. In terms of the simulated annual mean 525 CH₄ emissions and NGGB, our results indicate that variability from climate sensitivity is 526 comparable to those from landscape heterogeneity (Figure 8b,d). Therefore, bias-527 corrected climate and realistic peatland characterization are both necessary to reduce the 528 uncertainty in representing CH₄ dynamics and its radiative forcing effects. 529 In addition to its effects on carbon cycle predictions, changes in climate 530 conditions also affect permafrost degradation and thus induce changes in areal cover of 531 peatland types. Malmer et al. (2005) showed that there were -0.95, 0.24, and 0.62 ha areal 532 cover changes (-10.3%, 4.0%, and 46.3% percentage changes) from 1970 to 2000 in

533 palsa, bog, and fen, respectively, at the Stordalen Mire. By applying the annual mean

534	CO_2 and CH_4 exchanges simulated with bias-corrected climate from 2003 to 2007, the
535	areal cover changes from 1970 to 2000 alone would lead to -44 kg C y $^{-1},$ 76 kg C y $^{-1},$ and
536	2076 kg CO_2 -eq y ⁻¹ changes in annual mean CO_2 exchanges, CH_4 exchanges, and NGGB,
537	respectively, at the Stordalen Mire. The changes in landscape scale carbon cycle
538	dynamics indicate that the radiative warming impact of increased CH ₄ emissions is large
539	enough to offsets the radiative cooling impact of increased CO2 uptake at the Stordalen
540	Mire, consistent with the estimates reported in Deng et al. (2014). The areal cover
541	changes across peatland types could persist or accelerate under the projected warming
542	and wetting trends in the Arctic (Collins et al., 2013; Bintanja and Andry, 2017), which
543	could stimulate CH ₄ emissions and produce a stronger radiative warming impact.
544	

545 5. Conclusions

546 We evaluated the climate bias in a widely used atmospheric reanalysis product 547 (GSWP3) at our northern Sweden Stordalen Mire site. We then applied a comprehensive 548 biogeochemistry model, ecosys, to estimate the effects of these biases on active layer 549 development and carbon cycling across a thaw gradient at the site. Our results show that 550 ecosys reasonably represented measured hydrological, thermal, and biogeochemical cycle 551 processes in the intact permafrost palsa, partly thawed bog, and fully thawed fen. We found that the cold and wet biases in the GSWP3 climate reanalysis dataset significantly 552 553 alter model simulations, leading to biases in simulated Active Layer Depths, Net Carbon Balance, and Net Greenhouse Gas Balance by up to 28.6%, 38 g C m⁻² y⁻¹, and 298 g 554 CO₂-eq m⁻² y⁻¹, respectively. The Net Carbon Balance simulated with bias-corrected 555 556 climate suggests that all the examined peatland types are currently net carbon sinks from

- 557 the atmosphere, although the bog and fen sites can have positive radiative forcing impacts
- 558 due to their higher CH₄ emissions.

559	Our results indicate that the annual means of ALD, CO_2 uptake, and CH_4
560	emissions generally increase along the permafrost thaw gradient at the Stordalen Mire
561	under current climate, consistent with previous studies in this region. Our analysis
562	suggests that palsa, bog, and fen landscape features differ strongly in their carbon cycling
563	dynamics and have different responses to climate forcing biases. Differences in simulated
564	CO ₂ and CH ₄ exchanges driven by uncertainty from climate forcing are as large as those
565	from landscape heterogeneity across the examined permafrost thaw gradient. Model
566	simulations demonstrate that the palsa site exhibits the strongest sensitivity to biases in
567	air temperature and precipitation. The wet bias in GSWP3 could erroneously increase
568	predicted CH ₄ emissions from the palsa site to a magnitude comparable to emissions
569	currently measured in bog and fen sites. These results also show that increased
570	precipitation projected for high latitude regions could strongly accelerate CH ₄ emissions
571	from the palsa area, even without degradation of palsa into bog and fen. Future studies
572	should thus recognize the effects of climate forcing uncertainty on carbon cycling, in
573	addition to tracking changes in carbon budget associated with areal changes in permafrost
574	degradation.
575	

576 Acknowledgements

577 This study was funded by the Genomic Science Program of the United States Department

- 578 of Energy Office of Biological and Environmental Research under the ISOGENIE
- 579 project, grant DE-SC0016440, to Lawrence Berkeley Laboratory under contract DE-

- 580 AC02-05CH11231, and by support from the Swedish Research Council (VR) to PMC.
- 581 We thank the Abisko Scientific Research Station of the Swedish Polar Research
- 582 Secretariat for providing the meteorological data.

584	References
585	Ahlström, A., Schurgers, G. and Smith, B.: The large influence of climate model bias on
586	terrestrial carbon cycle simulations, Environmental Research Letters, 12(1),
587	014004, doi: <u>10.1088/1748-9326/12/1/014004</u> , 2017.
588	Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., Jones, C., Jung,
589	M., Myneni, R. and Zhu, Z.: Evaluating the Land and Ocean Components of the
590	Global Carbon Cycle in the CMIP5 Earth System Models, J. Climate, 26(18),
591	6801-6843, doi:10.1175/JCLI-D-12-00417.1, 2013.
592	Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., Bayer, A. D.,
593	Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M., Friedlingstein, P.,
594	Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S., Pugh, T. A. M., Robertson,
595	E., Viovy, N., Yue, C. and Zaehle, S.: Historical carbon dioxide emissions caused
596	by land-use changes are possibly larger than assumed, Nature Geoscience, 10(2),
597	79–84, doi: <u>10.1038/ngeo2882</u> , 2017.
598	Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. and Bastviken, D.: Non-
599	methane volatile organic compound flux from a subarctic mire in Northern
600	Sweden, Tellus B, 60(2), 226–237, doi: <u>10.1111/j.1600-0889.2007.00331.x</u> ,
601	2008a.
602	Bäckstrand, K., Crill, P. M., Mastepanov, M., Christensen, T. R. and Bastviken, D.: Total
603	hydrocarbon flux dynamics at a subarctic mire in northern Sweden, Journal of
604	Geophysical Research: Biogeosciences, 113(G3), doi: 10.1029/2008JG000703,
605	2008b.

- 606 Backstrand, K., Crill, P. M., ski, M. J.-K., Mastepanov, M., Christensen, T. R. and
- 607 Bastviken, D.: Annual carbon gas budget for a subarctic peatland, Northern
- 608 Sweden, 14, 2010.
- Berrisford, P., Dee, D. P., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Kållberg, P. W.,
- 610 Kobayashi, S., Uppala, S. and Simmons, A.: The ERA-Interim archive Version
- 611 2.0, 2011.
- 612 Bintanja, R. and Andry, O.: Towards a rain-dominated Arctic, Nature Climate Change,
- 613 7(4), 263–267, doi:<u>10.1038/nclimate3240</u>, 2017.
- 614 Callaghan, T. V., Bergholm, F., Christensen, T. R., Jonasson, C., Kokfelt, U. and
- 515 Johansson, M.: A new climate era in the sub-Arctic: Accelerating climate changes
- and multiple impacts, Geophysical Research Letters, 37(14),
- 617 doi:10.1029/2009GL042064, 2010.
- 618 Chang, K.-Y., Paw U, K. T. and Chen, S.-H.: The importance of carbon-nitrogen
- biogeochemistry on water vapor and carbon fluxes as elucidated by a multiple
- 620 canopy layer higher order closure land surface model, Agricultural and Forest
- 621 Meteorology, 259, 60–74, doi:10.1016/j.agrformet.2018.04.009, 2018.
- 622 Christensen, T. R., Johansson, T., Åkerman, H. J., Mastepanov, M., Malmer, N., Friborg,
- 623 T., Crill, P. and Svensson, B. H.: Thawing sub-arctic permafrost: Effects on
- 624 vegetation and methane emissions, Geophysical Research Letters, 31(4),
- 625 doi:<u>10.1029/2003GL018680</u>, 2004.
- 626 Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao,
- 627 W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and
- 628 M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and

629	Irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of
630	Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
631	on Climate Change. T. F. Stocker et al., Eds., Cambridge University Press, 1029-
632	1136.
633	Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,
634	Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
635	Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk,
636	M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross,
637	T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D. and Worley, S. J.: The
638	Twentieth Century Reanalysis Project, Quarterly Journal of the Royal
639	Meteorological Society, 137(654), 1–28, doi: <u>10.1002/qj.776</u> , 2011.
640	Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H.,
641	Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe,
642	S. A., Lewkowicz, A. G., Williams, M. and Hartley, I. P.: Limited contribution of
643	permafrost carbon to methane release from thawing peatlands, Nature Climate
644	Change, 7(7), 507–511, doi: <u>10.1038/nclimate3328</u> , 2017.
645	Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J.: Acceleration of
646	global warming due to carbon-cycle feedbacks in a coupled climate model, 408,
647	4, 2000.
648	Deng, J., Li, C., Frolking, S., Zhang, Y., Bäckstrand, K. and Crill, P.: Assessing effects of
649	permafrost thaw on C fluxes based on multiyear modeling across a permafrost
650	thaw gradient at Stordalen, Sweden, Biogeosciences, 11(17), 4753-4770,
651	doi: <u>10.5194/bg-11-4753-2014</u> , 2014.

652	Dimitrov, D. D., Bhatti, J. S. and Grant, R. F.: The transition zones (ecotone) between
653	boreal forests and peatlands: Ecological controls on ecosystem productivity along
654	a transition zone between upland black spruce forest and a poor forested fen in
655	central Saskatchewan, Ecological Modelling, 291, 96-108,
656	doi:10.1016/j.ecolmodel.2014.07.020, 2014.
657	Dimitrov Dimitre D., Grant Robert F., Lafleur Peter M. and Humphreys Elyn R.:
658	Modeling the effects of hydrology on gross primary productivity and net
659	ecosystem productivity at Mer Bleue bog, Journal of Geophysical Research:
660	Biogeosciences, 116(G4), doi:10.1029/2010JG001586, 2011.
661	Dirmeyer, P. A.: A History and Review of the Global Soil Wetness Project (GSWP),
662	Journal of Hydrometeorology, 12(5), 729–749, doi: <u>10.1175/JHM-D-10-05010.1</u> ,
663	2011.
664	Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P.,
665	Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T.,
666	Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P.,
667	Reick, C., Roeckner, E., Schnitzler, KG., Schnur, R., Strassmann, K., Weaver,
668	A. J., Yoshikawa, C. and Zeng, N.: Climate–Carbon Cycle Feedback Analysis:
669	Results from the C ⁴ MIP Model Intercomparison, Journal of Climate, 19(14),
670	3337–3353, doi: <u>10.1175/JCLI3800.1</u> , 2006.
671	Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S.
672	K. and Knutti, R.: Uncertainties in CMIP5 Climate Projections due to Carbon
673	Cycle Feedbacks, Journal of Climate, 27(2), 511–526, doi:10.1175/JCLI-D-12-
674	<u>00579.1</u> , 2014.

- 675 Ghimire, B., Riley, W. J., Koven, C. D., Mu, M. and Randerson, J. T.: Representing leaf
- and root physiological traits in CLM improves global carbon and nitrogen cycling
- 677 predictions, Journal of Advances in Modeling Earth Systems, 8(2), 598–613,
- 678 doi:<u>10.1002/2015MS000538</u>, 2016.
- 679 Grant, R. F.: Modelling changes in nitrogen cycling to sustain increases in forest
- 680 productivity under elevated atmospheric CO2 and contrasting site conditions,
- 681 Biogeosciences, 10(11), 7703–7721, doi:10.5194/bg-10-7703-2013, 2013.
- 682 Grant, R. F.: Nitrogen mineralization drives the response of forest productivity to soil
- 683 warming: Modelling in ecosys vs. measurements from the Harvard soil heating
- 684 experiment, Ecological Modelling, 288, 38–46,
- 685 doi:10.1016/j.ecolmodel.2014.05.015, 2014.
- 686 Grant R. F. and Flanagan L. B.: Modeling stomatal and nonstomatal effects of water
- 687 deficits on CO2 fixation in a semiarid grassland, Journal of Geophysical
- 688 Research: Biogeosciences, 112(G3), doi:10.1029/2006JG000302, 2007.
- 689 Grant, R. F. and Roulet, N. T.: Methane efflux from boreal wetlands: Theory and testing
- 690 of the ecosystem model Ecosys with chamber and tower flux measurements,
- Global Biogeochemical Cycles, 16(4), 2-1-2–16, doi:10.1029/2001GB001702,
- 692 2002.
- 693 Grant, R. F., Oechel, W. C. and Ping, C.-L.: Modelling carbon balances of coastal arctic
- tundra under changing climate, Global Change Biology, 9(1), 16–36,
- 695 doi:10.1046/j.1365-2486.2003.00549.x, 2003.
- 696 Grant, R. F., Black, T. A., Humphreys, E. R. and Morgenstern, K.: Changes in net
- 697 ecosystem productivity with forest age following clearcutting of a coastal

698

070	Douglas-in forest, testing a mathematical model with eddy covariance
699	measurements along a forest chronosequence, Tree Physiol., 27(1), 115-131,
700	2007a.
701	Grant, R. F., Arkebauer, T. J., Dobermann, A., Hubbard, K. G., Schimelfenig, T. T.,
702	Suyker, A. E., Verma, S. B. and Walters, D. T.: Net Biome Productivity of
703	Irrigated and Rainfed Maize-Soybean Rotations: Modeling vs. Measurements,
704	Agronomy Journal, 99(6), 1404, doi:10.2134/agronj2006.0308, 2007b.
705	Grant, R. F., Barr, A. G., Black, T. A., Gaumont Guay, D., Iwashita, H., Kidson, J.,
706	McCAUGHEY, H., Morgenstern, K., Murayama, S., Nesic, Z., Saigusa, N.,
707	Shashkov, A. and Zha, T.: Net ecosystem productivity of boreal jack pine stands
708	regenerating from clearcutting under current and future climates, Global Change
709	Biology, 13(7), 1423–1440, doi:10.1111/j.1365-2486.2007.01363.x, 2007c.
710	Grant, R. F., Margolis, H. A., Barr, A. G., Black, T. A., Dunn, A. L., Bernier, P. Y. and
711	Bergeron, O.: Changes in net ecosystem productivity of boreal black spruce
712	stands in response to changes in temperature at diurnal and seasonal time scales,
713	Tree Physiology, 29(1), 1–17, doi:10.1093/treephys/tpn004, 2009a.
714	Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Dunn, A. L., Metsaranta, J.,
715	Wang, S., McCaughey, J. H. and Bourque, C. A.: Interannual variation in net
716	ecosystem productivity of Canadian forests as affected by regional weather
717	patterns - A Fluxnet-Canada synthesis, Agricultural and Forest Meteorology,
718	149(11), 2022–2039, doi:10.1016/j.agrformet.2009.07.010, 2009b.
719	Grant, R. F., Hutyra, L. R., Oliveira, R. C., Munger, J. W., Saleska, S. R. and Wofsy, S.
720	C.: Modeling the carbon balance of Amazonian rain forests: resolving ecological

Douglas-fir forest: testing a mathematical model with eddy covariance

721	controls on net ecosystem productivity, Ecological Monographs, 79(3), 445-463,
722	doi:10.1890/08-0074.1, 2009c.
723	Grant, R. F., Barr, A. G., Black, T. A., Margolis, H. A., Mccaughey, J. H. and Trofymow,
724	J. A .: Net ecosystem productivity of temperate and boreal forests after
725	clearcutting-a Fluxnet-Canada measurement and modelling synthesis, Tellus B:
726	Chemical and Physical Meteorology, 62(5), 475-496, doi:10.1111/j.1600-
727	0889.2010.00500.x, 2010.
728	Grant, R. F., Kimball, B. A., Conley, M. M., White, J. W., Wall, G. W. and Ottman, M.
729	J.: Controlled Warming Effects on Wheat Growth and Yield: Field Measurements
730	and Modeling, Agronomy Journal, 103(6), 1742–1754,
731	doi:10.2134/agronj2011.0158, 2011a.
732	Grant, R. F., Humphreys, E. R., Lafleur, P. M. and Dimitrov, D. D.: Ecological controls
733	on net ecosystem productivity of a mesic arctic tundra under current and future
734	climates, Journal of Geophysical Research: Biogeosciences, 116(G1),
735	doi:10.1029/2010JG001555, 2011b.
736	Grant, R. F., Baldocchi, D. D. and Ma, S.: Ecological controls on net ecosystem
737	productivity of a seasonally dry annual grassland under current and future
738	climates: Modelling with ecosys, Agricultural and Forest Meteorology, 152, 189-
739	200, doi:10.1016/j.agrformet.2011.09.012, 2012a.
740	Grant, R. F., Desai, A. R. and Sulman, B. N.: Modelling contrasting responses of wetland
741	productivity to changes in water table depth, Biogeosciences, 9(11), 4215–4231,
742	doi:10.5194/bg-9-4215-2012, 2012b.

743	Grant R. F., Humphreys E. R. and Lafleur P. M.: Ecosystem CO2 and CH4 exchange in a
744	mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1.
745	Modeling versus measurements, Journal of Geophysical Research:
746	Biogeosciences, 120(7), 1366-1387, doi:10.1002/2014JG002888, 2015.
747	Grant, R. F., Mekonnen, Z. A., Riley, W. J., Wainwright, H. M., Graham, D. and Torn,
748	M. S.: Mathematical Modelling of Arctic Polygonal Tundra with Ecosys: 1.
749	Microtopography Determines How Active Layer Depths Respond to Changes in
750	Temperature and Precipitation, Journal of Geophysical Research: Biogeosciences,
751	122(12), 3161–3173, doi: <u>10.1002/2017JG004035</u> , 2017a.
752	Grant, R. F., Mekonnen, Z. A., Riley, W. J., Arora, B. and Torn, M. S.: Mathematical
753	Modelling of Arctic Polygonal Tundra with Ecosys: 2. Microtopography
754	Determines How CO $_2$ and CH $_4$ Exchange Responds to Changes in Temperature
755	and Precipitation: GHG Exchange in Arctic Polygonal Tundra, Journal of
756	Geophysical Research: Biogeosciences, 122(12), 3174-3187,
757	doi: <u>10.1002/2017JG004037</u> , 2017b.
758	Guo, D., Wang, H. and Wang, A.: Sensitivity of Historical Simulation of the Permafrost
759	to Different Atmospheric Forcing Data Sets from 1979 to 2009, Journal of
760	Geophysical Research: Atmospheres, 122(22), 12,269-12,284,
761	doi: <u>10.1002/2017JD027477</u> , 2017.
762	Harris, I., Jones, P. D., Osborn, T. J. and Lister, D. H.: Updated high-resolution grids of
763	monthly climatic observations - the CRU TS3.10 Dataset, International Journal of
764	Climatology, 34(3), 623-642, doi:10.1002/joc.3711, n.d.

765	Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S.
766	R., Rich, V. I. and Chanton, J. P.: Changes in peat chemistry associated with
767	permafrost thaw increase greenhouse gas production, Proceedings of the National
768	Academy of Sciences, 111(16), 5819-5824, doi:10.1073/pnas.1314641111, 2014.
769	van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T., Douville,
770	H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W.,
771	Jia, B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S.,
772	Mao, J., Flanner, M. G., Zampieri, M., Materia, S., Law, R. M. and Sheffield, J.:
773	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture
774	Model Intercomparison Project – aims, setup and expected outcome,
775	Geoscientific Model Development, 9(8), 2809-2832, doi:10.5194/gmd-9-2809-
776	2016, 2016.
776 777	2016, 2016. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL.,
777	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL.,
777 778	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,
777 778 779	Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL.,Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D.,O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z.,
777 778 779 780	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon
777 778 779 780 781	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences,
777 778 779 780 781 782	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11(23), 6573–6593, doi:10.5194/bg-11-6573-2014, 2014.
777 778 779 780 781 782 783	 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, CL., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O&apos;Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J. and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11(23), 6573–6593, doi:10.5194/bg-11-6573-2014, 2014. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I,

- 787 Johansson, M., Callaghan, T. V., Bosiö, J., Åkerman, H. J., Jackowicz-Korczynski, M.
- and Christensen, T. R.: Rapid responses of permafrost and vegetation to
- experimentally increased snow cover in sub-arctic Sweden, Environmental
- 790 Research Letters, 8(3), 035025, doi:<u>10.1088/1748-9326/8/3/035025</u>, 2013.
- Johansson, T., Malmer, N., Crill, P. M., Friborg, T., &Kerman, J. H., Mastepanov, M. and
- 792 Christensen, T. R.: Decadal vegetation changes in a northern peatland, greenhouse
- gas fluxes and net radiative forcing, Global Change Biology, 12(12), 2352–2369,
- 794 doi:<u>10.1111/j.1365-2486.2006.01267.x</u>, 2006.
- 795 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
- Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins,
- 797 W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds,
- 798 R., Jenne, R. and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bull.
- 799 Amer. Meteor. Soc., 77(3), 437–472, doi:10.1175/1520-
- 800 0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
- 801 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M. and
- 802 Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), Bull. Amer. Meteor. Soc.,
- 803 83(11), 1631–1644, doi:10.1175/BAMS-83-11-1631, 2002.
- Lundin, E. J., Klaminder, J., Giesler, R., Persson, A., Olefeldt, D., Heliasz, M.,
- 805 Christensen, T. R. and Karlsson, J.: Is the subarctic landscape still a carbon sink?
- 806 Evidence from a detailed catchment balance, Geophysical Research Letters,
- 43(5), 1988–1995, doi:<u>10.1002/2015GL066970</u>, 2016.
- 808 Malmer, N., Johansson, T., Olsrud, M. and Christensen, T. R.: Vegetation, climatic
- 809 changes and net carbon sequestration in a North-Scandinavian subarctic mire over

810	30 years, Global Change Biology, 11(11), 1895–1909, doi:10.1111/j.1365-
811	<u>2486.2005.01042.x</u> , 2005.
812	Mastepanov, M., Sigsgaard, C., Dlugokencky, E. J., Houweling, S., Ström, L., Tamstorf,
813	M. P. and Christensen, T. R.: Large tundra methane burst during onset of
814	freezing, Nature, 456(7222), 628-630, doi: 10.1038/nature07464, 2008.
815	McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, EH., Mondav,
816	R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W. and Saleska, S. R.:
817	Methane dynamics regulated by microbial community response to permafrost
818	thaw, Nature, 514(7523), 478–481, doi: 10.1038/nature13798, 2014.
819	Mezbahuddin, M., Grant, R. F. and Hirano, T.: Modelling effects of seasonal variation in
820	water table depth on net ecosystem CO ₂ exchange of a tropical peatland,
821	Biogeosciences, 11(3), 577–599, doi: <u>10.5194/bg-11-577-2014</u> , 2014.
822	Mondav, R., McCalley, C. K., Hodgkins, S. B., Frolking, S., Saleska, S. R., Rich, V. I.,
823	Chanton, J. P. and Crill, P. M.: Microbial network, phylogenetic diversity and
824	community membership in the active layer across a permafrost thaw gradient,
825	Environmental Microbiology, 19(8), 3201–3218, doi:10.1111/1462-2920.13809,
826	2017.
827	Mondav, R., Woodcroft, B. J., Kim, EH., McCalley, C. K., Hodgkins, S. B., Crill, P.
828	M., Chanton, J., Hurst, G. B., VerBerkmoes, N. C., Saleska, S. R., Hugenholtz, P.,
829	Rich, V. I. and Tyson, G. W.: Discovery of a novel methanogen prevalent in
830	thawing permafrost, Nature Communications, 5, 3212, doi:10.1038/ncomms4212,
831	2014.

832	Myhre, G., D. Shindell, FM. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, JF.
833	Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T.
834	Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In:
835	Climate Change 2013: The Physical Science Basis. Contribution of Working
836	Group I to the Fifth Assessment Report of the Intergovernmental Panel on
837	Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J.
838	Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge
839	University Press, Cambridge, United Kingdom and New York, NY, USA, pp.
840	659–740, doi:10.1017/ CBO9781107415324.018.
841	Olefeldt, D. and Roulet, N. T.: Effects of permafrost and hydrology on the composition
842	and transport of dissolved organic carbon in a subarctic peatland complex, Journal
843	of Geophysical Research: Biogeosciences, 117(G1), doi: 10.1029/2011JG001819,
844	2012.
845	Piao, S., Liu, Z., Wang, T., Peng, S., Ciais, P., Huang, M., Ahlstrom, A., Burkhart, J. F.,
846	Chevallier, F., Janssens, I. A., Jeong, SJ., Lin, X., Mao, J., Miller, J.,
847	Mohammat, A., Myneni, R. B., Peñuelas, J., Shi, X., Stohl, A., Yao, Y., Zhu, Z.
848	and Tans, P. P.: Weakening temperature control on the interannual variations of
849	spring carbon uptake across northern lands, Nature Climate Change, 7(5), 359-
850	363, doi: <u>10.1038/nclimate3277</u> , 2017.
851	Raz-Yaseef, N., Torn, M. S., Wu, Y., Billesbach, D. P., Liljedahl, A. K., Kneafsey, T. J.,
852	Romanovsky, V. E., Cook, D. R. and Wullschleger, S. D.: Large CO2 and CH4
853	emissions from polygonal tundra during spring thaw in northern Alaska,

854	Geophysical Research Letters, 44(1), 504–513, doi: 10.1002/2016GL071220,
855	2017.
856	Rydén, B. E., Fors, L. and Kostov, L.: Physical Properties of the Tundra Soil-Water
857	System at Stordalen, Abisko, Ecological Bulletins, (30), 27-54, 1980.
858	Schuur, E. a. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J.,
859	Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt,
860	D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C. and Vonk, J.
861	E.: Climate change and the permafrost carbon feedback, Nature, 520(7546), 171-
862	179, doi:10.1038/nature14338, 2015.
863	Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A. and
864	Hatano, R.: Falling atmospheric pressure as a trigger for methane ebullition from
865	peatland, Global Biogeochemical Cycles, 21(2), doi:10.1029/2006GB002790,
866	2007.
867	Viovy, N.: CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land
868	Model, Research Data Archive at the National Center for Atmospheric Research,
869	Computational and Information Systems Laboratory, Boulder CO.
870	Wickland, K. P., Striegl, R. G., Neff, J. C. and Sachs, T.: Effects of permafrost melting
871	on CO2 and CH4 exchange of a poorly drained black spruce lowland, Journal of
872	Geophysical Research: Biogeosciences, 111(G2), doi: 10.1029/2005JG000099,
873	2006.
874	Woodcroft, B. J., Singleton, C. M., Boyd, J. A., Evans, P. N., Emerson, J. B., Zayed, A.
875	A. F., Hoelzle, R. D., Lamberton, T. O., McCalley, C. K., Hodgkins, S. B.,
876	Wilson, R. M., Purvine, S. O., Nicora, C. D., Li, C., Frolking, S., Chanton, J. P.,

- 877 Crill, P. M., Saleska, S. R., Rich, V. I. and Tyson, G. W.: Genome-centric view of
- carbon processing in thawing permafrost, Nature, doi:<u>10.1038/s41586-018-0338-</u>
- 879 <u>1</u>, 2018.
- 880 Wu, Z., Ahlström, A., Smith, B., Ardö, J., Eklundh, L., Fensholt, R. and Lehsten, V.:
- 881 Climate data induced uncertainty in model-based estimations of terrestrial
- primary productivity, Environmental Research Letters, 12(6), 064013,
- doi:10.1088/1748-9326/aa6fd8, 2017.
- 884 Yoshimura, K. and Kanamitsu, M.: Dynamical Global Downscaling of Global
- Reanalysis, Monthly Weather Review, 136(8), 2983–2998,
- doi:<u>10.1175/2008MWR2281.1</u>, 2008.
- 887 Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P. and Schulz, M.:
- 888 Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of
- the nitrogen cycle in the historical terrestrial carbon balance, Global
- Biogeochemical Cycles, 24(1), doi:<u>10.1029/2009GB003522</u>, 2010.
- 891 Zimov, S. A., Davydov, S. P., Zimova, G. M., Davydova, A. I., Schuur, E. a. G., Dutta,
- 892 K. and Chapin, F. S.: Permafrost carbon: Stock and decomposability of a globally
- significant carbon pool, Geophysical Research Letters, 33(20),
- doi:<u>10.1029/2006GL027484</u>, 2006.
- 895

- Table 1. Temporal coverage of quality-controlled CO₂ and CH₄ exchanges measured by
- automatic chambers at the three peatland types in the Stordalen Mire during the years
- 898 2002 to 2007.

		CO_2			CH_4	
Sites	Number of data points	3 Hourly coverage (%)	Daily coverage (%)	Number of data points	3 Hourly coverage (%)	Daily coverage (%)
Palsa	12752	65.8	12.4	N/A	N/A	N/A
Bog	12821	68.5	12.7	6660	96.2	25.0
Fen	8989	63.8	13.7	4923	90.5	33.7

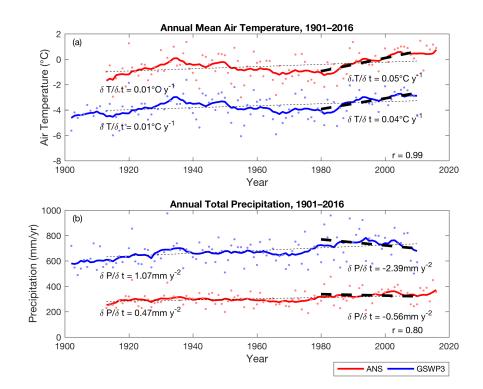
- 900 Table 2. The evaluation of the 3 hourly and daily CO₂ and CH₄ exchanges simulated at
- 901 the palsa, bog, and fen sites. RRMSEs are relative root mean squared errors.

			3-Hourly		Daily	
		\mathbb{R}^2	RRMSEs (%)	R^2	RRMSEs (%)	
Sites	C component					
Palsa	CO ₂	0.48	13.4	0.36	18.3	
Bog	CO ₂ CH ₄	0.63 0.31	19.1 16.3	0.44 0.47	35.8 22.3	
Fen	CO ₂ CH ₄	0.64 0.44	8.4 11.1	0.43 0.54	25.5 16.9	

902

904	Table 3. Means and standard deviations of cumulative CO ₂ and CH ₄ exchanges simulated
-----	--

at the palsa, bog, and fen sites during the period 2003 to 2007. All units are represented in


906 g C m⁻².

		Growing season; Days 119– 288		Non-growing season; Days 1–118/289–365	
		Mean	Standard deviation	Mean	Standard deviation
Sites	C flux component				
Palsa					
	CO_2	-72.70	19.10	38.89	4.09
	CH_4	0.04	0.02	0.01	0.002
Bog					
	CO_2	-79.59	21.46	42.89	2.16
	CH_4	3.52	0.45	0.42	0.11
Fen					
	CO_2	-88.65	7.26	44.41	6.13
	CH_4	10.86	3.95	0.78	0.18

908

909

Figure 1. Time series of the air temperature (a) and precipitation (b) measured at ANS
(red; years 1913–2016) and extracted from GSWP3 (blue; years 1901–2010). Dots are
the annual means and solid lines are the decadal moving averages of the corresponding
annual means. Thin and thick dashed lines are the trends for years 1913–2010, and years
1980–2010, respectively. The inset r values are the correlation coefficients calculated
between the two time series.

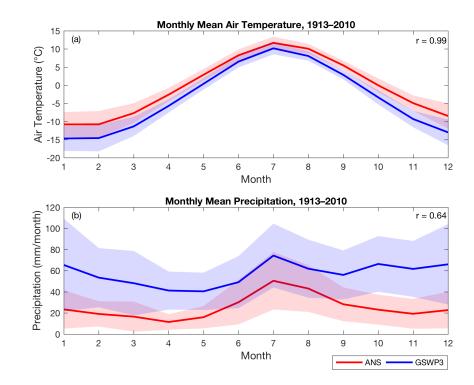
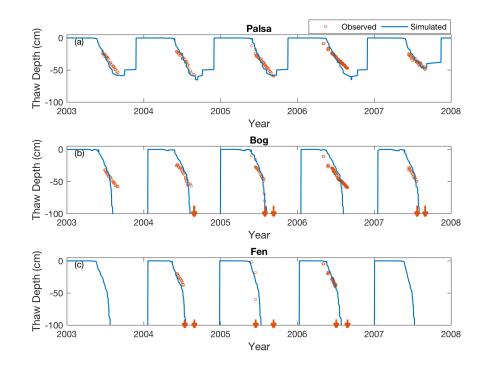
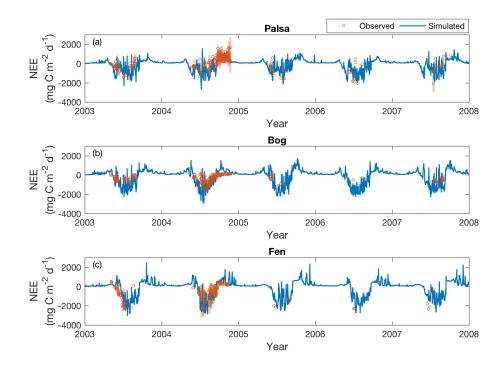
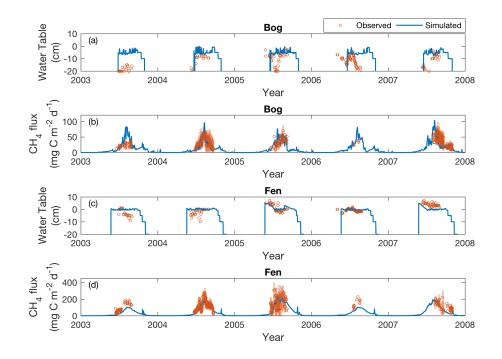



Figure 2. Monthly mean air temperature (a) and precipitation (b) measured at ANS (red)
and extracted from GSWP3 (blue). The shaded area is the inter-annual variability for the
corresponding dataset, represented by the standard deviations calculated at each month.
The inset r values are the correlation coefficients calculated between the two time series.



923

Figure 3. Simulated (solid lines) and measured (open circles) seasonal dynamics of thaw
depth at the palsa (a), bog (b), and fen (c) sites from 2003 to 2007. Downward arrows
indicate the time period that the measured thaw depth is deeper than 90 cm for a
measurement year.



929

Figure 4. Simulated (solid lines) and measured (open circles) daily CO₂ exchanges (NEE)
at the palsa (a), bog (b), and fen (c) sites, from 2003 to 2007. Shaded bars are the
standard deviations of the daily NEE measured across the subsites under each peatland
type. The positive values indicate effluxes, and the negative values indicate influxes.

935

936Figure 5. Simulated (solid lines) and measured (open circles) water table depth and daily937 CH_4 emissions at the bog and fen sites from 2003 to 2007. Shaded bars are the standard938deviations of the daily CH_4 emissions measured across the subsites under each peatland939type.

941

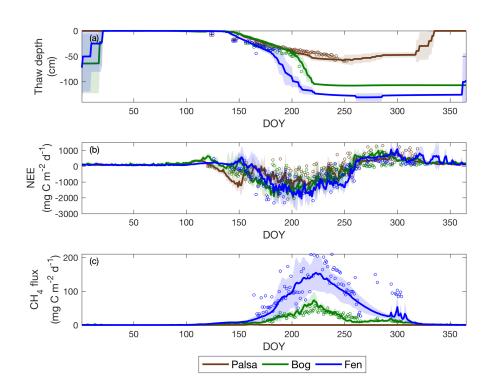
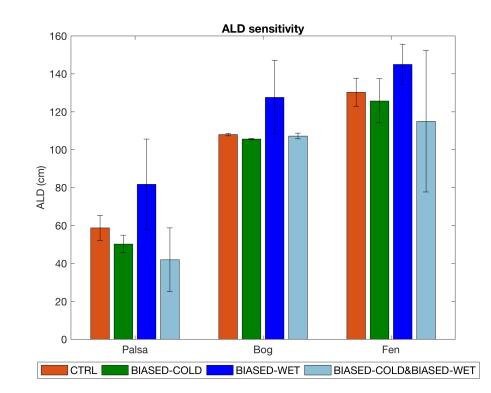



Figure 6. Daily composite results of (a) thaw depth, (b) daily NEE, and (c) daily CH4
exchanges across the thaw gradient from 2003 to 2007. Solid lines and open circles are
the simulated and measured inter-annual means, respectively. The shaded area is the
simulated inter-annual variability for the corresponding dataset, represented by the
standard deviations calculated at each day of year. The positive values indicate effluxes,
and the negative values indicate influxes.

950 Figure 7. Simulated ALD at the palsa, bog, and fen sites, for four sets of climate forcing

951 (Section 2.5). Bars and error bars are the means and standard deviations calculated from

- 952 2003 to 2007, respectively.
- 953

949

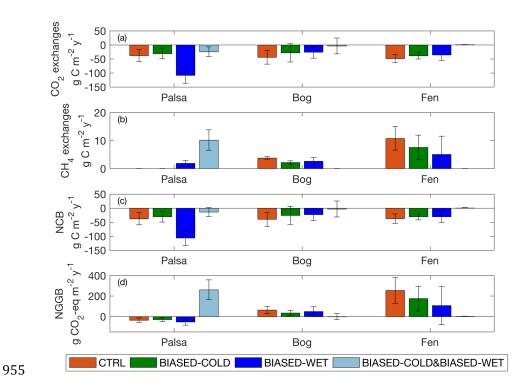


Figure 8. Annual CO₂ exchanges (a), CH₄ exchanges (b), Net Carbon Balance (c), and
Net Greenhouse Gas Balance (d) simulated at the palsa, bog, and fen sites, under each set
of simulations. Bars and error bars are the means and standard deviations calculated from
2003 to 2007, respectively. The positive values indicate effluxes, and the negative values
indicate influxes.